Actualités - économie d'énergie, énergie solaire

Les dernières actus...


L'énergie (du grec : ενεργεια, energeia, force en action[1]) est la capacité d'un système à produire un travail entraînant un mouvement, de la lumière ou de la chaleur. C'est une grandeur physique qui caractérise l'état d'un système et qui est d'une manière globale conservée au cours des transformations. Dans le Système international d'unités, l'énergie s'exprime en joul


Formes d’énergie

L’énergie se manifeste sous diverses formes :

On qualifie également l’énergie selon la source d’où elle est extraite ou le moyen par lequel elle est acheminée: l’énergie nucléaire, l’énergie de masse, l’énergie solaire, l’énergie électrique, l’énergie chimique, l’énergie thermique, l’énergie éolienne... L’énergie mécanique désigne la combinaison de l’énergie cinétique et de l’énergie potentielle mécanique.

Principe de conservation de l'énergie [modifier]

L'énergie ne peut ni se créer ni se détruire mais uniquement se transformer d'une forme à une autre (principe de Mayer) ou être échangée d'un système à un autre (principe de Carnot). C'est le principe de conservation de l'énergie.

Ce principe empirique a été validé, bien après son invention, par le théorème de Noether. La loi de la conservation de l'énergie découle de l'homogénéité du temps. Elle énonce que le mouvement ne peut être créé et ne peut être annulé : il peut seulement passer d'une forme à une autre. Afin de donner une caractéristique quantitative des formes de mouvement qualitativement différentes considérées en physique, on introduit les formes d'énergie qui leur correspondent

La foudre illustre généralement l'énergie à l'état naturel. Paradoxalement elle en contient assez peu. Sa violence vient surtout de la rapidité et de l'extrême localisation du phénomène.

Historique

Le mot énergie vient du bas-latin energia qui vient lui-même du grec ancien ἐνέργεια (energeia), qui signifie « force en action »[1], par opposition à δύναμις (dynamis) signifiant « force en puissance ».

L’énergie est un concept ancien. Après avoir exploité sa propre force, celle des esclaves, des animaux, l’homme a appris à exploiter les énergies contenues dans la nature (d’abord les vents, énergie éolienne et les chutes d’eau, énergie hydraulique) et capables de lui fournir une quantité croissante de travail mécanique par l’emploi de machines : machines-outils, chaudières et moteurs. L’énergie est alors fournie par un carburant (liquide ou gazeux, énergie fossile ou non).

L’expérience humaine montre que tout travail requiert de la force et produit de la chaleur ; que plus on « dépense » de force par quantité de temps, plus vite on fait un travail, et plus on s’échauffe.

Comme l’énergie est nécessaire à toute entreprise humaine, l’approvisionnement en sources d'énergie est devenu une des préoccupations majeures des sociétés humaines.

Énergétique

Relations entre les différents types d'énergies

Dans les sociétés industrielles, l'activité humaine passe par la fourniture d'énergie électrique produite par des matières premières, principalement charbon, gaz naturel, pétrole et uranium ; on parle alors d'énergie fossile ; ces matières premières sont appelées par extension « énergies ». On parle aussi d'énergies renouvelables lorsque l'on utilise l'énergie solaire, l'énergie éolienne ; l'énergie hydraulique des barrages est la plus importante des énergies renouvelables. (Voir aussi : politique énergétique.) L'énergie est un concept essentiel en physique, qui se précise depuis le XIXe siècle.

On retrouve le concept d'énergie dans toutes les branches de la physique :

Solaire photovoltaïque, bientôt des cellules arc-en-ciel à 30 pourcents de rendement?

Le photovoltaïque est très loin d'être actuellement rentable, seule une politique subventionniste donne l'illusion qu'il l'est. Le potentiel de progès notamment en terme de rendement énergétique est donc important. Voici un exemple de recherches cherchant à améliorer ce critère...mais à quel prix?

"A l'University of Notre Dame, Indiana, un groupe de chercheurs dirigé par Dr Prashant V. Kamat a mis au point des cellules photovoltaïques en combinant des quantum dots semiconducteurs de différentes tailles et des nanotubes de TiO2 à la place des semiconducteurs classiquement utilisés, les rendant beaucoup plus efficaces. L'étude, soutenue par l'Office of Basic Energy Sciences du Department of Energy est publiée dans le Journal of the American Chemical Society.

Les scientifiques utilisent ces quantum dots de Cadmium Selenide (CdSe) semiconducteurs plutôt que d'autres matériaux car ils présentent l'unique avantage d'absorber certaines longueurs d'ondes de la lumière, en fonction de leur taille : les quantum dots plus petits vont absorber des longueurs d'ondes plus courtes, les plus grands vont en absorber de plus longues. En combinant plusieurs types de Quantum dots de CdSe, les chercheurs peuvent donc créer des cellules photosensibles qui absorbent un plus grand spectre de lumière et sont par là même plus efficaces. L'équipe a arrangé ces quantum dots en motif ordonné sur la surface d'un film d'épaisseur nanométrique, et y ont intégré des nanotubes de dioxyde de Titane (TiO2). Les quantum dots absorbent les photons et produisent des électrons qui sont alors transportés par les nanotubes et collectés par une électrode, produisant ainsi le photocourant.

Outre l'absorption de longueurs d'onde particulières, les chercheurs ont remarqué que la taille des quantum dots a une influence sur la performance, en faisant l'expérience avec quatre types de ces nanoparticules (entre 2,3 et 3,7 nm de diamètre, elles présentent des pics d'absorption à des longueurs d'onde situées entre 505 et 580 nm). Les plus petits quantum dots peuvent convertir plus rapidement les photons en électrons, quand les plus larges absorbent un plus grand pourcentage de photons. Les quantum dots de 3nm de diamètre offrent le meilleur compromis. Après le développement de la première cellule photovoltaïque composée de différents types de quantum dots, les chercheurs prévoient pour les prochaines étapes de leur recherche de créer des cellules "arc en ciel", en superposant des couches de quantum dots en fonction de leur taille : sur la couche externe, les plus petits absorbent le bleu, et la lumière rouge (longueur d'onde plus grande) passe à travers cette couche pour atteindre la couche interne composée des quantum dots les plus larges qui absorbent le rouge, créant ainsi un gradient d'absorption "arc en ciel", tout en combinant les effets de conversion rapide des petits quantum dots et de taux d'absorption important des quantum dots plus larges.

Les cellules photosensibles actuelles en silicium ont une efficacité de 15 à 20%, le reste est perdu en chaleur. Kamat prévoit une efficacité plus importante avec ces nouveaux types de cellules photovoltaïques "arc en ciel", qui pourrait facilement dépasser les 30%.

Src: http://www.bulletins-electroniques.com/actualites/53560.htm

Livres...