Actualités - économie d'énergie, énergie solaire

Les dernières actus...


L'énergie (du grec : ενεργεια, energeia, force en action[1]) est la capacité d'un système à produire un travail entraînant un mouvement, de la lumière ou de la chaleur. C'est une grandeur physique qui caractérise l'état d'un système et qui est d'une manière globale conservée au cours des transformations. Dans le Système international d'unités, l'énergie s'exprime en joul


Formes d’énergie

L’énergie se manifeste sous diverses formes :

On qualifie également l’énergie selon la source d’où elle est extraite ou le moyen par lequel elle est acheminée: l’énergie nucléaire, l’énergie de masse, l’énergie solaire, l’énergie électrique, l’énergie chimique, l’énergie thermique, l’énergie éolienne... L’énergie mécanique désigne la combinaison de l’énergie cinétique et de l’énergie potentielle mécanique.

Principe de conservation de l'énergie [modifier]

L'énergie ne peut ni se créer ni se détruire mais uniquement se transformer d'une forme à une autre (principe de Mayer) ou être échangée d'un système à un autre (principe de Carnot). C'est le principe de conservation de l'énergie.

Ce principe empirique a été validé, bien après son invention, par le théorème de Noether. La loi de la conservation de l'énergie découle de l'homogénéité du temps. Elle énonce que le mouvement ne peut être créé et ne peut être annulé : il peut seulement passer d'une forme à une autre. Afin de donner une caractéristique quantitative des formes de mouvement qualitativement différentes considérées en physique, on introduit les formes d'énergie qui leur correspondent

La foudre illustre généralement l'énergie à l'état naturel. Paradoxalement elle en contient assez peu. Sa violence vient surtout de la rapidité et de l'extrême localisation du phénomène.

Historique

Le mot énergie vient du bas-latin energia qui vient lui-même du grec ancien ἐνέργεια (energeia), qui signifie « force en action »[1], par opposition à δύναμις (dynamis) signifiant « force en puissance ».

L’énergie est un concept ancien. Après avoir exploité sa propre force, celle des esclaves, des animaux, l’homme a appris à exploiter les énergies contenues dans la nature (d’abord les vents, énergie éolienne et les chutes d’eau, énergie hydraulique) et capables de lui fournir une quantité croissante de travail mécanique par l’emploi de machines : machines-outils, chaudières et moteurs. L’énergie est alors fournie par un carburant (liquide ou gazeux, énergie fossile ou non).

L’expérience humaine montre que tout travail requiert de la force et produit de la chaleur ; que plus on « dépense » de force par quantité de temps, plus vite on fait un travail, et plus on s’échauffe.

Comme l’énergie est nécessaire à toute entreprise humaine, l’approvisionnement en sources d'énergie est devenu une des préoccupations majeures des sociétés humaines.

Énergétique

Relations entre les différents types d'énergies

Dans les sociétés industrielles, l'activité humaine passe par la fourniture d'énergie électrique produite par des matières premières, principalement charbon, gaz naturel, pétrole et uranium ; on parle alors d'énergie fossile ; ces matières premières sont appelées par extension « énergies ». On parle aussi d'énergies renouvelables lorsque l'on utilise l'énergie solaire, l'énergie éolienne ; l'énergie hydraulique des barrages est la plus importante des énergies renouvelables. (Voir aussi : politique énergétique.) L'énergie est un concept essentiel en physique, qui se précise depuis le XIXe siècle.

On retrouve le concept d'énergie dans toutes les branches de la physique :

Comment s'inspirer de la nature pour concevoir les cellules solaires du futur ?

Une équipe de chercheurs de la chaire de Chimie Physique de l'Université Ludwig-Maximilian de Munich (LMU) a montré qu'il était possible d'améliorer considérablement la capacité naturelle d'absorption lumineuse des plantes en introduisant des nanoparticules d'argent dans les pigments responsables de cette absorption (LHC, [1]). Cette découverte, à laquelle ont également participé des chercheurs de l'Université américaine de Ohio, pourrait s'avérer significative pour le futur développement de cellules photovoltaïques innovantes, qui fonctionneraient sur l'exemple biologique d'exploitation photosynthétique de l'énergie solaire.


La capture de l'énergie lumineuse pour la plante s'effectue grâce à des antennes collectrices ou LHC qui sont des complexes multi-protéiques et pigmentaires capables d'intercepter les photons de différentes longueurs d'onde, c'est-à-dire d'énergies variées. Les mesures expérimentales menées par les scientifiques du LMU ont été effectuées sur un LHC particulier présent chez certaines algues marines (du type Amphidinium carterae) : le complexe péridinine-cholorophylle (PCP). Déposé sur un support en verre recouvert d'îlots de nanoparticules d'argent, le PCP a été exposé à une lumière laser (dans le domaine des longueurs d'onde bleu-vert) afin d'en déterminer par la suite la capacité absorbante à l'aide d'un spectromètre à fluorescence. L'expérience a révélé une intensité fluorescente du signal mesuré jusqu'à 18 fois supérieure pour le PCP modifié que pour le PCP naturel. Par ailleurs, aucune altération de la structure protéique du PCP n'a été observée.

Selon certains modèles théoriques, l'augmentation de l'efficacité de l'absorption s'explique par une double stimulation du PCP : à l'excitation directe de la lumière s'ajoute l'effet du champ électrique créé par les nanoparticules. Le recours à des LHC de synthèse et la fabrication de nanostructures métalliques spécifiques devraient permettre d'optimiser le processus inspiré par la biologie.

Ces résultats ont été publiés dans l'actuel numéro du magazine "Nano Letters".

Src: http://www.bulletins-electroniques.com/actualites/53159.htm

Livres...